O tym, czy kryształy czasowe (czasoprzestrzenne) istnieją naprawdę, fizycy zastanawiają się od 2012 roku, kiedy to noblista Frank Wilczek zaproponował ich istnienie. Te hipotetyczne obiekty dysponują strukturą powtarzalną (jak w klasycznym krysztale), choć nie w przestrzeni, a w czasie. W ostatnich latach, większość fizyków jednogłośnie sugerowała, że istnienie kryształów czasowych jest niemożliwe ze względu na ich dziwne właściwości. Choć kryształy czasowe nie mogłyby być używane do generowania energii użytecznej i nie łamią drugiej zasady termodynamiki, wydaje się, że naruszają fundamentalną symetrię praw fizyki.
Uczeni z Uniwersytetu Kalifornijskiego w Santa Barbara (UCSB) i Microsoft Station Q wykazali na przełomie lat 2016/2017, że istnienie kryształów czasu jest możliwe. Kryształy są bowiem zdolne do spontanicznego złamania symetrii translacji czasu. Z klasycznymi kryształami spotkał się każdy z nas. Są nimi ziarenka soli kuchennej, płatki śniegu, grafit w ołówkach albo kamienie szlachetne takie jak diament. Wszystkie one mają wspólną cechę. Gdybyśmy popatrzyli na nie przez bardzo dobry mikroskop, okazałoby się, że atomy są w nich ułożone w regularną sieć i każdy z nich ma swoje dobrze określone miejsce.
![]() |
Kryształki lodu i śniegu |
Spontaniczne złamanie symetrii to zjawisko fizyczne zachodzące, gdy stan podstawowy układu fizycznego ma niższą symetrię, niż symetria układu fizycznego. Wyobraźmy sobie garść monet zawieszonych w stanie nieważkości. Można odróżnić orła od reszki, ale poza tym monety są symetryczne względem odwracania. Każdą monetę, na której widzimy reszkę, możemy odwrócić o 180 stopni i wtedy zobaczymy na niej orła. Kiedy włączymy grawitację, a monety spadną na jakąś płaszczyznę, niektóre z nich leżą do góry orłem, a inne reszką. Bez podnoszenia monet z płaszczyzny nie możemy zamienić monety z reszką w monetę z orłem. Nie występuje między nimi symetria. Tę można zauważyć dopiero po wprowadzeniu do układu odpowiedniej energii, niezbędnej do podniesienia monety. Dlatego spontaniczne złamanie symetrii jest najlepiej widoczne w wysokich energiach. W fizyce zjawisko złamania symetrii można zaobserwować podczas spontanicznego namagnesowania w ferromagnetykach. Istnieje zasadnicza różnica między bezpośrednim złamaniem symetrii i spontanicznym złamaniem symetrii. Jeżeli symetria zostaje bezpośrednio złamana, to prawa natury nie mają już symetrii. Spontaniczne złamanie symetrii oznacza, że prawa natury mają symetrię, ale natura wybiera stan, w którym jej nie ma - powiedział Dominic Else, fizyk z UCSB, współautor badań.